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Towards A New Approach

OBJECTIVE:

Increase Efficiency By Optimizing the Entire Mining and Processing System

STRATEGY:

1. Baseline Current Practices
and Knowledge

2. Propose Hypotheses

4. Increase Understanding and
Then Control




Mesabi Iron Range:
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Central Mesabi Range - Taconite Mine

Development
Idealized Section Looking West

mDipping benches average 4% slope for blending — slightly askew to geology

=40 foot (13 m) average bench height — typically 3 benches of ore

mSimple geologic framework with a complex metallurgical response



Autogenous crushing and

orinding circuit
S -2

 Single stage crushing A
60 (1.5 m) gyratory crushers
set to 9”7 (23 cm) opening
 Single stage grinding
36’ (11.0 m) autogenous mills
concentrate 75-85% -325 mesh




Exploring the Data...the Challenge

m Underutilized data offer mine geologists a value
creation opportunity that should be explored much the
same as prospective ground

m Large amounts of data are collected by, but not always
evaluated by the geology department

m In this computer age — staggering amounts of data are
compiled in relational databases, but unexamined

= Many physical rock properties are considered
“engineering” variables

m The mine geology function is too often task-oriented

m Though well positioned to address downstream
processing issues, geologists commonly have little or no
contact with ore dressing



PROCESS CONTROL

m Already Know Where the Metal is

® What Else Controls the Process?

Chemical Properties

= IOW{ Bond’s Equation (1952)

1 1
VP NF j
= Add New Control Properties to the

Orebody Model



Tonnage Factor

= Imprecise bulk density is the most
common error found in ore reserves

m Geologists — those most qualified to
characterize tonnage — are often detached
from what is considered an engineering
function

m A few hand samples commonly quantify
multi-million ton deposits

m Often “historic” precedents — little or no
documentation



Tonnage Factor Estimations
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Tonnage Factor Modeling

Magnetic Fe vs. Tonnage Factor - Crude Fe vs. Tonnage Factor - Weight Recovery vs. Tonnage
All Data All Data Factor - All Data
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Tonnage Factor (ft*/LT)
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Comparison of Sampling Methods

Air Pycnometer S.G.

Dry Immersion Specific Gravity vs. Midland Air Pycnometer
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Tonnage Factor Modeling

Magnetic Fe vs. Tonnage Factor -

All Data
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Cocfficients | Standard Error
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Tonnage Determination

Benefits:

m Better ore reserve estimation and blast grading
m Improved blast pattern loading

m Royalties paid on a per-modeled ton basis reduced
for leaner ore blasts

m Reduced discount between mine predicted and plant
weight recovery

m Improved deliverables from drill core

Cost

m Summer intern 2.5 weeks, bucket, scale, hydrometer

m Lab costs for check samples



Measure. Then Control
Hypothesis: Need a Range of Sizes for AG Mills

Measure How Fragmentation Affects Autogenous

Mill Performance
What Mix of Muck Sizes Work Better?

Measure What atfects Fragmentation

Geology
Powder Factor
Blast Design

Feed Size Distribution - tools
m Production drill performance

® Drill cote geotechnical measurements



CRUSHER PRODUCT SIZES
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Drill Monitoring Systems

Graphics Refresh Zoom Display Utilities

343500

, 34346 )

mEngineers use systems to improve
~ " productivity and fragmentation

. mUsed to much lesser extent for geologic
~ classification

mMany production drills come pre-
equipped to record performance
indicators — “free” data



Definition of Specific Energy

SE = Energy per Unit Volume Excavated

SE=[ L) 27| M) infinz (Teale, 1964)
4) \ 4 \ rROP

Energy: Torque (7 1bin.) RPM (N),
Pulldown (F'1b) and ROP (ft./min)

Volume: Bit Area and ROP (4:ROP ft:in?) in
one minute



Drilling Specific Energy

199 \ [ 218 ',

. Blasthole Drilling Tests.Ore-Strength”

714 2331

. SE is Read’ﬂyerVallable Eglijglﬁ o RS
Monltorlng) LA e W A W\ \\x
\ A

ModeFSElllkezAnyE@re @\;ﬁﬁhty\m R\
SE ‘ESmoothﬁ ()Klt”\()\pé a\torah \ a

24n Y

1Ix'.L 1“". II".I III'. | "'.II h 1.IL

I?ns \
%gﬂd *aracterl*zeﬁth‘e Rock
Can S

Pre 1ct M1 ] Performhnce"




SE is Tool and Rock Specific

Blast hole drills Boring machines Explosives

Explosives at pf =1
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Bench Composites of SE
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Bench composites vs. modeled oxidation

= Map boundaries
between zones of
contrasting
strength

= Fill in gaps
between wide-
spaced DDH

m Minimize impact
of subdrill or
overbreak



Contoured Bench Composites of SE

m Map lithologic contacts

m Reflect bed thickness and
in situ fracture frequency

3-4% m May also show variations
Specific Energy (in. Ib/in3) in hardness/work index

B, 0 s
| F28 . 0 Il FEAE | [

B v R v i b | R i i

m Identify sources of

; EAPE . @ ° °
ctiog cofll "700. 00 potential rock bridges/
o000 ool S50 . on crusher plugs

m Distinct zones cross
pattern progression

= Some boundaries may
reflect tool changeout




= Equipment F
No Data
Loss of Blend




Drill Core Geotechnical Data

m Typically used for engineering ground
stability studies

= No data collected by the geologist are
used so infrequently — by the geologist

m No buy in - possibly suspect quality -
loss of customer support

= Data are often not digitally compiled and
are lost



Geotechnical Core Logs

% Core Pieces Longer than 2", 4", 8", 10" in the 1-5
by Mining Area I Group 5
0 Group 4
0 Group 2/3
B Group 1

Area Holes DataPoints Feet
All 99 221

Stevenson 4 407
Carmi 357
Hul-Rust 921 4
Morris 515

All Areas

—>¢— Stevenson

Carmi

—— Hull-Rust

—&— Morris

Fracture Frequency (F/ft)

1-7 Unit 1-6 Unit 1-5 Unit 1-4 Unit
o 4" 6" g 10"

Core Length Between Natural Fractures Ge°|°g|c Unit

GEOTECHNICAL/METALLURGICAL CORE LOG
Modified RQD (27, 4”, 8", 10”)

FE | % staty | 2ot G. NOTES

2 RQD 8 Angle

22 6.1 55 13 85 Rough, irregular joint @ 85 degrees.
95.6 62.2 1.6 8
82 44.5 2 15 a0 Undulating, rough jt @ 38.5'; Cc on jt.
79.8 25.1 2.4 15 60 Rough, planar jt @ 47
68.4 21.9 2.9 15
55 17.2 3.7 13 85 Irregular planar jt @ 76'
21 7.4 13 45
10.8 10 75
0 3.7 20




Preliminary Size Distribution Index

Even though...

mRQD based on only 80
DDH in 4 loose clusters
across property

mCore size fractions
measured in box — not split
tubes
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mMill feed blasted and
crushed to —10 inch (25.4
cm) prior to WipFrag®©

>2.0 in (5.1 cm): Phase 1
Conveyor

Why?

mBlasting exploits pre-
existing fractures
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Improved Magnetic Susceptibility Mapping
and Ore Grading - Through Geotech Logging

% Mag Fe
[ A 5. @A
15,40 7 B
17 . A [ I |

Probed blast holes are
calibrated to nearest DDH
core samples

Poor core recovery
typically due to non-
magnetic, oxidized fines
washed into formation

Remaining DDH sample 2>
block model bias, poor
recovery reconciliation

Poor recovery intervals
now not used for probe
calibration. Polygons are
flagged as zones of
potential discount between
DDH and plant weight
recovery. Improved DDH
sampling.



Incorporate Geotechnical Data into
Mill Performance Predictions

Core Length,
FF

Current Predictors
Geological unit, liberation, ratio, silica, %-325, cobbing hours,
ambient temp, feeder plugs, % feeder run time

4

Liberation Index -

L

Bed Thickness
«~—— (ROM size) —

AG Mill LT/hr

Drill
Monitoring

j Bond’s Equation



Mill Throughput Predictions

Throughput Calculator

Input Coefficients

Intercept ﬁ 947.660

Powder Factor 0.72 .

RQD 50

% > 8" core pieces (SLAB8) 13

kW-hr/LT (LIB Index) 11.8

Predicted Crude MagFe (Smgfe) 20.2

Predicted Total Fe (Ciron) 30

——predict Liberation wtrec pred (Liswt) 28.7

—7pervov. |IRatio 95.9

e IPred %-325 (P325m) 71.1
Avg. [predict) DSC 191 82

%-1-3/4 13

%-1-7 2

Average Daily Temp 53

Cobbing hours 69

%fdr_runtime/milltime 98

Total Feeder Plug 0

Predicted (regression) vs. Actual Daily Throughput
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mOre-dominated milling variables — Geologist is person best suited to
validate inputs for plant performance estimates

mGarbage in = garbage out: surge maintenance, grading discrepancies, poor
met balance — all can weaken regression models if un-vetted




Communication

mDaily interaction between geologist and
mill

mWeekly interdepartmental ore quality
meetings

mMonthly geometallurgical reconciliation
reports



DATA INF ORMATION F LOW
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